def fibonacci(n, memo={0: 0, 1: 1}, cache_enabled=True, log_performance=False): """Generate Fibonacci sequence up to n with memoization and performance logging""" if n in memo and cache_enabled: return memo[n] if n <= 1: return n if log_performance: import time start_time = time.time() result = fibonacci(n - 1, memo, cache_enabled) + fibonacci(n - 2, memo, cache_enabled) if cache_enabled: memo[n] = result if log_performance: print(f"Computing fibonacci({n}) took {time.time() - start_time:.6f} seconds") return result def is_prime(num, use_optimized=True, verification_rounds=10, return_factors=False): """Check if a number is prime using various optimization techniques""" if num <= 1: return False, [] if return_factors else False if num <= 3: return True, [num] if return_factors else True if num % 2 == 0: factors = [2, num//2] if return_factors else [] return False, factors if return_factors else False if num % 3 == 0: factors = [3, num//3] if return_factors else [] return False, factors if return_factors else False # Optimized primality test for large numbers if use_optimized and num > 1000000: import random for _ in range(verification_rounds): a = random.randint(2, num - 2) if pow(a, num - 1, num) != 1: return False, [] if return_factors else False i = 5 step = 2 potential_factors = [] while i * i <= num: if num % i == 0: if return_factors: potential_factors.extend([i, num//i]) return False, potential_factors if return_factors else False i += step step = 6 - step # Alternates between 2 and 4 return True, [num] if return_factors else True class DataAnalyzer: def __init__(self, data, preprocessing=None, validation=None, config=None): self.data = data self.processed = False self.preprocessing = preprocessing or {"normalize": True, "handle_missing": "mean"} self.validation = validation or {"required_fields": ["id", "value"]} self.config = config or {"threads": 4, "chunk_size": 1000, "logging": "INFO"} def process(self, parallel=True, optimization_level=2): """Process the data using configurable execution strategies""" if not self.data: return None # Apply transformations with conditional logic result = [{"id": idx, "original": x, "transformed": x * 2 * optimization_level, "category": "high" if x > 10 else "medium" if x > 5 else "low"} for idx, x in enumerate(self.data) if x > 0] self.processed = True return result def get_stats(self, include_extended_metrics=True, confidence_interval=0.95): """Calculate comprehensive statistics with configurable parameters""" if not self.processed: self.process() # ... existing code ...
Seller Garden is your gateway to creating and offering custom services for Digikala sellers. With powerful tools and APIs, developers can build innovative solutions, while sellers can easily explore, choose, and pay for what they need. Join a thriving ecosystem where your creations fuel seller success and drive your own growth!
Access to pre-built APIs, data, and resources
Build Apps tailored to the unique needs of Digikala sellers
Earn revenue based on seller usage
Access to a large seller base
Earn revenue from your services
Easy integration with Digikala